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An in"nite periodic structure unsteady response to a forced excitation is
considered. Any forced excitation can be presented as a sequence or a distribution
of impulses. The instantaneous impulse is an in"nite sum of harmonic forces of the
same amplitude and phase, whose frequencies "ll the in"nite band as follows from
the Fourier transformation of the Dirac delta function. The solution to the problem
of a periodic structure steady state response to excitation by a harmonic
concentrated stationary force is obtained by reducing the problem to a di!erence
equation and used to calculate the unsteady response. The in"nite periodic
structure consisting of an in"nite stretched string, supported by equidistantly
spaced identical suspensions, is considered. Each suspension consists of a spring
and a dashpot with viscous damping, in parallel. Small transverse oscillations of
the string without bending sti!ness are considered. In order to exclude from the
solution the string slope, which experience a sudden change at the point, where
a concentrated force is applied, and so at every suspension point, the boundary
problem is solved over the string unloaded span. The string transverse de#ection at
an arbitrary point of the span as well as its slope are expressed via the de#ection
values at the beginning and at the end of the span. Then, two neighbour spans are
considered together. A suspension reaction that depends on the suspension point
de#ection is connected with the string slopes to the right and to the left of the point.
The connection involves the string transverse de#ection at three successive
suspension points and represents the second order di!erence equations. The
solution to this equation allows one to express the string de#ections at all
suspension points via only two, which relate to ends of the span, where the
excitation is applied. Consideration of this span leads to calculation of the string
steady state oscillations and response to an impact. To give an example of
application, the latter is used to calculate the string response to a suddenly applied
force.

( 1999 Academic Press
1. INTRODUCTION

Any force excitation can be presented as a sequence or a distribution of
instantaneous impulses. Each impulse is an in"nite sum of harmonic forces of the
same amplitude and phase, whose frequencies "ll the in"nite band. This follows
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from the Fourier transformation of the Dirac delta function. Therefore, the
problem of a periodic structure steady state response to a harmonic concentrated
force may be considered as an initial one in such an approach.

There are several ways to solve the initial problem. In references [1}7], this
problem was solved by means of the Fourier transformation and reduced to the
calculation of an improper single integral. This way leads to an undesirable
consequetive integration to calculate the periodic structure unsteady response. The
next way consists of using the transfer matrix method. One regular span of the
periodic structure is considered in this method. There is a certain vector, which
determines the disturbance of the structure at an arbitrary point of the span. The
initial values problem is solved over this span. The solution forms the transfer
matrix, which connects two values of the vector that relate to the beginning and to
the end of the span. The connection represents a vector-di!erence equation of the
"rst order. The solution of this equation allows one to express the vectors via two
vectors, which relate to ends of the span, where the excitation force is applied.
Consideration of this span completes the solution to the entire problem. If the
periodic structure is a periodic beam (see references [8}12]), then the
four-dimensional vector, which presents, for example, the beam transverse
de#ection, slope, curvation and shear, can be used.

The in"nite stretched string, supported by the equidistantly spaced identical
suspensions, is considered in this paper. Each suspension consists of a spring and
a dashpot with viscous damping, in parallel. Only small transverse oscillations of
the string are taken into account, the string bending sti!ness is neglected and so the
string slope experiences a sudden change at every point, where a concentrated force
is applied, and so at any suspension point. In order to exclude the string slope from
the solution, a new method that leads to a scalar di!erence equation of the second
order has been worked out. In accordance with this method, the boundary problem
is solved over every string span. The string transverse de#ection at an arbitrary
point of the span as well as the slope are expressed via the de#ection values at the
beginning and at the end of the span. Then, two unloaded neighbour spans are
considered. A suspension reaction that depends on the suspension point de#ection
is connected with the string slopes to the right and to the left of the point. The
connection involves the string transverse de#ection at three successive suspension
points and allows one to obtain the second order di!erence equation. By solving
this equation, one expresses the string de#ections at all suspension points via only
two, which relate to ends of the loaded span. Consideration of the loaded span
completes the solution of the steady state problem and, then, leads to calculation of
the string response to an impact. To give an example of application, the latter is
used to calculate the string unsteady response to a suddenly applied force.

2. STATEMENT OF THE PROBLEM

An in"nite string is stretched by a constant tension force f and supported by
periodic suspensions with spacing l, identical sti!ness k and viscous damping k

1
(see

Figure 1). Let variables t and x denote the time and the co-ordinate along the string.



Figure 1. Periodic structure; (a) suspension; (b) span of a string.
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The point x"0 corresponds to one of suspension points. The small transverse
continuous de#ection y(x, t) of the string is caused by a transverse load q (x, t) and
governed by the linear partial di!erential equation [13]. A string has no bending
sti!ness, contrary to a beam. Therefore, its tangent is discontinuous at any point x

0
,

where a concentrated force is applied. Let L~y(x
0
, t)/Lx and L`y(x

0
, t)/Lx denote

the string tangent slopes to the left and to the right of the point x
0
. At the

suspension points x"nl, where n is an integer, the function fLy(x, t)/Lx experiences
the sudden change ky (nl, t)#k

1
Ly(nl, t)/Lt, which is equal to the force, acting upon

the suspension (see Figure 1). Therefore,

f [L`y(nl, t)/Lx!L~y(nl, t)/Lx]"ky(nl, t)#k
1
Ly(nl, t)/Lt. (1)

Another way to account for the suspension reactions is to add them to the
transverse load [14, 15]. In such an approach, the string de#ection is governed by
the following so-called functional-di!erential equation [16]:

oL2y(x, t)/Lt2!f L2y(x, t)/Lx2

#

`=
+

n/~=

[ky(nl, t)#k
1
Ly(nl, t)/Lt]d (x!nl)"q (x, t), (2)

where o is the string linear density and d denotes the Dirac function. This equation
links the string de#ection at an arbitrary point x and those at the suspension
points nl.

The string steady state oscillations, caused by the excitation

q (x, t)"a
0
exp(iu

0
t)d (x!x

0
), (3)

were considered in reference [4]. This excitation represents the concentrated
harmonic force a

0
exp(iu

0
t) of the amplitude a

0
and the angular velocity u

0
, which

is applied to the point x
0
"v

0
t that moves steadily along the string with the

non-zero speed v
0
. The solution to problem (2)}(3) was obtained by means of the

Fourier transformation in the form of an improper integral. In the particular case of
v
0
"0, the solution was yielded in such a form by means of certain limit procedure.

In the next section the solution will be found directly without integration.
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3. INITIAL PROBLEM

Let the single harmonic force a
0
exp(iu

0
t) is applied to the stationary point x

0
,

where 0)x
0
)l. Similar to equality (1), one can write

f [L`y(x
0
, t)/Lx!L~y(x

0
, t)/Lx]#a

0
exp(iu

0
t)"0. (4)

Equation (2) now reduces to the following:

oL2y(x, t)/Lt2!f L2y(x, t)/Lx2

#

`=
+

n/~=

[ky(nl, t)#k
1
Ly(nl, t)/Lt]d (x!nl)

"a
0
exp(iu

0
t)d (x!x

0
). (5)

Denote dimensionless values by

X"x/l, X
0
"x

0
/l, ¹"v

*
t/l, > (X, ¹)"y(x, t)/l,

K"kl/f, K
1
"k

1
/(o f )1@2, A

0
"a

0
/f, X

0
"u

0
l/v

*
,

where v
*
"( f /o)1@2 is the speed of a free wave, propagating in a free string. So, l/v

*
is the time as the free wave moves over the distance l and the corresponding value of
the dimensionless time ¹ is 1. Except ¹, all these dimensionless values were used in
reference [4], where ¹"v

0
t/l was adopted as the dimensionless time. Variable

X denotes the dimensionless longitudinal co-ordinate. The dimensionless
co-ordinate X

0
, where 0)X

0
)1, marks the excitation point. Introducing the

dimensionless values in (1), (4) and (5) and taking into account that
d(x!x

0
)"d(X!X

0
)/l, one obtains

L`>(n, ¹)/LX!L~>(n, ¹)/LX"K>(n, ¹ )#K
1
L>(n, ¹)/L¹ (6)

L`>(X
0
, ¹)/LX!L~>(X

0
, ¹)/LX"A

0
exp(iX

0
¹)"0, (7)

L2>(X, ¹)/L¹2!L2>(X, ¹)/LX2

#

`=
+

n/~=

[K>(n, ¹)#K
1
L>(n, ¹)/L¹]d(X!n)

"A
0
exp(iX

0
¹)d(X!X

0
). (8)

Here and below, upper indices &&$'' have the same sense as before. Now, consider
the steady state oscillations of the string, caused by the stationary harmonic force.
Every point of the string performs harmonic oscillations with the excitation
frequency. Therefore,

>(X, ¹)"A
0
exp(iX

0
¹)A(X, X

0
), (9)
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where A (X, X
0
) is the complex amplitude of oscillations of the string arbitrary

point X, related to A
0
"1 and caused by the stationary harmonic force of the

dimensionless angular velocity X
0
, applied to the point X

0
. By introducing (9) into

(6)}(8) and cancelling exp(iX
0
¹ ), yields

d`A(n, X
0
)/dX!d~A(n, X

0
)/dX"K

0
A(n, X

0
), (10)

d`A(X
0
, X

0
)/dX!d~A(X

0
, X

0
)/dX#1"0. (11)

The complex value K
0
"K#iX

0
K

1
presents both the suspension dimensionless

sti!ness K and viscous damping K
1
. Excluding the points X

0
and n, where the

concentrated forces are applied, and considering any of segments between these
points, one obtains

d2A(X, X
0
)/dX2#X2

0
A(X, X

0
)"0. (12)

Thus, the complex amplitude A(X, X
0
) of the segment point is governed by the

ordinary di!erential equation (12). Consider a boundary problem which connects
this amplitude to the ones related to the beginning and end of the segment. Solving
the equation over all the segments and sticking the solutions together by means of
equalities (10) and (11), one can obtain the complex amplitude of the entire string.
After this, the string transverse de#ection can be obtained by means of equality (9).

Start with the loaded segment 0)X)1. The excitation point X
0

divides this
segment into to parts. Consider them separately.

If 0)X)X
0
, then

A(X, X
0
)"[A(0, X

0
)sin(X

0
(X

0
!X))

#A (X
0
, X

0
)sin(X

0
X)]/sin(X

0
X

0
), (13)

d~A(X
0
, X

0
)/dX"[A(X

0
, X

0
)cos(X

0
X

0
)

!A (0, X
0
)]X

0
/sin(X

0
X

0
).

If X
0
)X)1, then

A(X, X
0
)"[A(X

0
, X

0
)sin(X

0
(1!X))

#A (1, X
0
)sin(X

0
(X!X

0
))]/sin(X

0
(1!X

0
)), (14)

d`A(X
0
, X

0
)/dX"[A(1, X

0
)

!A(X
0
, X

0
)]cos(X

0
(1!X

0
))]/sin(X

0
(1!X

0
)).

Taking these and equality (11) into account, one obtains the equality

A (X
0
, X

0
)sinX

0
"sin(X

0
(1!X

0
)) sin(X

0
X

0
)/X

0

#A(0, X
0
)sin(X

0
(1!X

0
))#A(1, X

0
)sin(X

0
X

0
) (15)
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which links the complex amplitudes that correspond to three points 0, X
0

and 1.
Consider a set of the regular segments 0On)X)n#1. For every such segment,

A(X, X
0
)"[A(n, X

0
)sin(X

0
(n#1!X))

#A(n#1, X
0
)sin(X

0
(X!n))]/sinX

0
, (16)

d~A(n#1, X
0
)/dX"[A(n#1, X

0
)cosX

0

!A (n, X
0
)]X

0
/sinX

0
.

Let n'0 now. Substituting n#1 for n and X in the derivative to expression (16),
one obtains

d`A(n#1, X
0
)/dX"[A(n#2, X

0
)!A (n#1, X

0
)cosX

0
]X

0
/sin X

0
.

Substituting n#1 for n in equality (10) as well, and, then, substituting into it both
expressions, which follow expression (16), one yields the second order linear
homogeneous di!erence equations [17, 18]

A (n#2, X
0
)!2CA(n#1, X

0
)#A(n, X

0
)"0

with constant coe$cients, which links the values of the complex amplitude that
correspond to three successive suspension points n'0, n#1 and n#2.
Elementary solutions to this equation can be found in the following form:

A (n#1, X
0
)"HA(n, X

0
), (17)

where the constant H is unknown. Substituting this into the di!erence equation,
one obtains a quadratic equation

H2!2CH#1"0

to determine H. Here and above

2C"2cosX
0
#K

0
sinX

0
/X

0
. (18)

The coe$cient 2C depends on the dimensionless angular velocity X
0
. Two roots

H
0,1

of the equation are always connected to each other with the equality
H

0
H

1
"1 and so they can be equal to $1 only simultaneously. In both cases,

C"$1 correspondingly. If K
1
O0 and so K

0
is not real, then these cases take

place only with X
0
"nn, nO0. If viscous damping in the suspensions is absent,

then K
1
"0 and so K

0
"K is real, as well as C. In the last case, there is an

additional set of values X
0
, which bring to C"$1. All these values correspond to

resonance or anti-resonance in the periodic string (see reference [4]). Thus, if
DCD'1, then roots

H
0,1

"C$JC2!1
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are di!erent real numbers of the same sign. This means that one of the two
values DH

0,1
D is more than 1, but another one is less than 1. If DCD(1, then the

roots

H
0,1

"C$iJ1!C2

are complex conjugated numbers and DH
0,1

D"1. The reverse statement takes place
too. Thus, if K

1
O0 and X

0
Onn, except n"0, then the quadratic equation has

two di!erent roots, which satisfy the following conditions: DH
0
D'1 and DH

1
D(1

that can be easily checked. In this case, the fundamental solution to the di!erence
equation is a linear combination of two elementary ones written above. Taking into
account that A(n#1, X

0
) tends to zero as nP#R, one should adopt for every

n'0

A (n#1, X
0
)"H

1
A (n, X

0
)"2"Hn

1
A (1, X

0
).

Now, expression (16) can be reduced to the next:

A(X, X
0
)"Hn~1

1
A(1, X

0
)[sin(X

0
(n#1!X))

#H
1
sin(X

0
(X!n))]/sinX

0
, 0(n)X)n#1. (19)

Similarly, one can obtain A (n, X
0
)"Hn

0
A(0, X

0
) for every n(0 and so A (n, X

0
)

tends to zero again as nP!R. Thus,

A(X, X
0
)"Hn

0
A(0, X

0
)[sin(X

0
(n#1!X))

#H
0
sin(X

0
(X!n))]/sinX

0
, n)X)n#1)0. (20)

The last two expressions include only two unknown values A (0, X
0
) and A(1, X

0
).

Equality (15) links the unknowns with the third one A(X
0
, X

0
). In order to "nd two

missing equalities, one should consider two segments, neighbouring to the loaded
one. Substituting n"1 into expression (19), then X"1 into the derivatives to
expressions (19) and (14), one obtains the following:

d`A(1, X
0
)/dX"A(1, X

0
)(H

1
!cosX

0
)X

0
/sinX

0
,

d~A(1, X
0
)/dX"[A(1, X

0
)cos(X

0
(1!X

0
))

!A(X
0
, X

0
)]X

0
/sin(X

0
(1!X

0
)).

Substituting both derivatives and n"1 into equality (10) and making some
calculations, one yields

A(X
0
, X

0
)sinX

0
"A(1, X

0
)[sin(X

0
X

0
)#H

0
sin(X

0
(1!X

0
))]. (21)
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Let n"!1 now. Substituting X"0 into derivatives to the expressions (13) and
(20), one obtains

d`A(0, X
0
)/dX"[A(X

0
, X

0
)!A (0, X

0
)cos(X

0
X

0
)]X

0
/sin(X

0
X

0
),

d~A(0, X
0
)/dX"A (0, X

0
)(cosX

0
!H

1
)X

0
/sinX

0
.

Making former calculations once again, one yields

A(X
0
, X

0
)sinX

0
"A (0, X

0
)[sin(X

0
(1!X

0
))#H

0
sin(X

0
X

0
)]. (22)

Now, one has three linear equations (15), (21) and (22), which link three unknowns
A(0, X

0
), A(X

0
, X

0
) and A(1, X

0
). Solving the equations together one "nally

determines these values as

A(X
0
, X

0
)

"

[sin(X
0
(1!X

0
))#H

0
sin(X

0
X

0
)][sin(X

0
(1!X

0
))#H

1
sin(X

0
X

0
)]

X
0
(H

0
!H

1
)sinX

0

, (23)

A(0, X
0
)"

sin(X
0
(1!X

0
))#H

1
sin(X

0
X

0
)

X
0
(H

0
!H

1
)

, (24)

A (1, X
0
)"

H
1
sin(X

0
(1!X

0
))#sin(X

0
X

0
)

X
0
(H

0
!H

1
)

(25)

and completes solution of the initial problem. After substituting these values into
expressions (13), (14), (19) and (20), one can calculate the complex amplitude
(A(X, X

0
)) of the steady state oscillations, related to an arbitrary point of the

periodic string. This calculation needs no integration, but includes evaluation of the
complex value H

0
!H

1
, which depends on X

0
via C, and according to the

quadratic equation, can be reduced to the following expression:

H
0
!H

1
"$2JC2!1. (26)

The last shows that this value represents an in"nitesimal value of the 1/2nd order as
CP$1. The value A(X, X

0
) can approach in"nity in the presence of the

suspension viscous damping. The right sign in the right-hand side of equality (26)
can be chosen, if one takes into account that DH

0
D'1 and DH

1
D(1. This can be

done by means of a numerical procedure. If DA(X, X
0
)D is calculated, then this sign

plays no role and K
1
"0 (no resistance) can be adopted. Calculations of DA(0, X

0
)D

with X
0
"0 and K

1
"0 for di!erent values of the suspension dimensionless

sti!ness K and the excitation dimensionless angular velocity X
0

are shown in
Figure 2. There is anti-resonance, which corresponds to X

0
"nn, nO0, n is an

integer, and does not depend on K. The explanation of this can be found in
reference [4]. As K increases, the resonance angular velocity increases too. Similar
calculations were performed in reference [4] by means of integration, which is
possible if K

1
O0 only.



Figure 2. Frequency response to stationary excitation; 1, K"1; 2, K"2; 3, K"4.
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If one de"nes the sine functions in expressions (13), (14) and (16) in terms of
exponential functions and after that substitutes them into expression (9), then the
solution to the initial problem can be presented as a sum of a direct wave
exp(iX

0
(X!¹ )) and a reverse wave exp(iX

0
(X#¹)), which propagate over

a span of the string with the same speed in opposite directions. Each suspension
splits any of these waves into direct and reverse waves again, causing damping of
oscillations far away from the excitation point. This creates a stationary system of
such waves over the string. The modulus and phase of the complex number H in
equality (17) represent this damping and the phase lag over a span as well as over
any string segment of the same length. The last follows from expression (16). The
phase lag de"nes the phase velocity, which depends on K and X

0
.

The periodic string static de#ection can be calculated by means of the same
formulae, if one takes into account that sin(X

0
X)/X

0
tends to X as X

0
tends to zero.

This means that all spans of the periodic string reduce to straight lines. The number
H in equality (17), which is real and positive now, indicates the string de#ection
damping. In the static case,

H
1
"2/(K#2#JK2#4K), H

0
!H

1
"2JK2#4K.

If K increases, then H
0
!H

1
increases too, but H

1
tends to zero. The former means

that the string de#ection becomes less, if K increases. The latter means that the
string de#ection vanishes faster as XP$R. Calculation of the string static
de#ection, which is shown in Figure 3, con"rms this.

4. RESPONSE TO AN IMPACT

Consider the following transverse load:

q(x, t)"b
0
d(t!t

0
)d(x!x

0
), (27)



Figure 3. Static de#ection; (a) K"1; (b) K"2; 1, X
0
"0; 2, X

0
"0)25; 3, X

0
"0)5; 4, X

0
"0)75; 5,

X
0
"1.
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which consists of a double Dirac function and describes an instantaneous impulsive
force with the magnitude b

0
, applied to the string point x

0
at the time t

0
. The Dirac

function d (t!t
0
) can be used to present action of a very large force over a very

small time interval. On the other hand, a concentrated transverse load can be
presented as a sequence of such impulses, which act independent of each other due
to linearity of the considered structure. Substituting the load (27) into equation (2),
then introducing dimensionless values and taking into account that d(t!t

0
)"

v
*
d(¹!¹

0
)/l where ¹

0
"v

*
t
0
/l, yields

L2>(X, ¹ )/L¹2!L2>(X, ¹)/LX2
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#

`=
+

n/~=

[K>(n, ¹)#K
1
L>(n, ¹)/L¹]d (X!n)

"B
0
d(¹!¹

0
)d(X!X

0
), B

0
"b

0
/(l(o f )1@2). (28)

The functional-di!erential equation (28) describes the string response to the single
instantaneous impulse of force and may be directly solved by means of double
integration. In order to avoid a risky double integration of the double Dirac
function in the right-hand side of this equation, the Dirac function d(¹!¹

0
) can

be presented by means of the Fourier integral in the following form:

d(¹!¹
0
)"(2n)~1P

`=

~=

exp(iX
0
(¹!¹

0
)) dX

0
.

The integral shows that instantaneous impulsive force is an in"nite sum of
harmonic forces with the same amplitude and phase, whose angular velocities "ll
the in"nite band. This integral does not converge in the usual mathematical sense
and should be used with caution. Introducing this integral into the right-hand side
of equation (28), yields

B
0
(2n)~1P

`=

~=

exp(iX
0
(¹!¹

0
))d(X!X

0
)dX

0
.

Taking into account that the last integrand coincides with the right-hand side of
equation (8), one concludes that the solution to equation (28) can be obtained by
a single integration of solution (9) to equation (8) after substituting B

0
(2n)~1 for A

0
.

Thus, the following improper single integral

> (X, ¹)"B
0
(2n)~1P

`=

~=

exp(iX(¹!¹
0
))A (X, X) dX (29)

represents the solution to equation (28). The integration variable X is used instead
X

0
. Integrand (29) may approach in"nity in the presence of the suspension viscous

damping (see reference [4] and the previous section), but stays integrable.
Consider, for example, the response of a periodic string to an impulsive force,

applied to the suspension point X
0
"0 at the time ¹

0
"0. This response at the

same suspension point and at the neighbour one is represented by two following
integrals:

> (0, ¹)"
B

0
2n P

`=

~=

exp(iX¹)sinXdX
X(H

0
!H

1
)

,

> (1, ¹)"
B

0
2n P

`=

~=

H
1
exp(iX¹)sinXdX
X(H

0
!H

1
)

.

The last two integrands include complex values exp(iX¹), H
1

and H
0
!H

1
. The

real and imaginary parts of the "rst one are easily separated from each other. But
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the second and the third ones split into their real and imaginary parts numerically
at every integration step. This allows one to calculate both real and imaginary parts
of the integrals only numerically. The imaginary parts of both integrands are odd
function of the integration variable X and so both integrals are real. Results of the
evaluation of these integrals are shown in Figure 4. Curve 1 shows the string
response to an impulse at the suspension point. Curve 2 shows this response at the
neighbouring suspension.

Some interesting details in the curves should be mentioned and discussed. One
sees an instantaneous lifting of the excitation point at the time ¹"0, when the
excitation takes place. If an impulse of force has been applied to a concentrated
mass, which was at rest, then this mass gains a certain "nite speed. The string
mass is distributed along the string and the string disturbance spreads with a
"nite speed. This means that the impulse of force, applied to the string point
with zero mass, cause an in"nite speed of this point, while all other string points
are still at rest. The suspension viscous resistance cannot prevent the in"nite
speed because it is caused by the in"nite force. Therefore, the instantaneous
lifting of the excitation point seems to be justi"ed in such circumstances.
Small #uctuations in this curve just before and after the excitation are caused by
calculation errors. They quickly and randomly change with any change in the
numerical integration step and interval.

The impulsive force causes two shock waves, which propagate over string spans
with the same speed in opposite directions without distortion. Both waves reach
two neighbour suspensions and cause their de#ection at the dimensionless time
¹"1. The instantaneous lifting in curve 2 at the time marks this event. Small
#uctuations accompany this lifting too. Each neighbour suspension splits the wave
into direct and reverse ones. Both reverse waves reach the excitation point at the
dimensionless time ¹"2. This event is marked with an instantaneous drop in
curve 1 at the time. Further splits of the direct and reverse waves by these and all
the following suspensions lead to multiple instantaneous changes in both curves,
related to integer values of ¹. Thus, curves 1 and 2 shows that solution (29) rightly
presents the string behaviour [13] and periodic nature.

5. RESPONSE TO SUDDEN APPLICATION OF A FORCE

Consider the transverse load (3), applied to the periodic string again. Now
suppose that the concentrated harmonic force a

0
exp(iu

0
t) suddenly appears at the

time t"0 and the periodic string has been at rest before the appearence of
the excitation. Over the small time interval 0)t

0
)t)t

0
#dt

0
, the string

experiences action of the impulse of force with the magnitude a
0
exp(iu

0
t
0
) dt

0
"

b
0
exp(iX

0
¹

0
) d¹

0
, where b

0
"a

0
l (o/f )1@2, and so B

0
"a

0
/f. Substituting this

impulse into integral (29), one obtains the string response to the impulse in the
following form:

a
0
/(2nf )exp(iX

0
¹

0
) d¹

0P
`=

~=

exp(iX(¹!¹
0
))A (X, X) dX.



Figure 4. Response to an impact; K"2, K
1
"0)1, X

0
"0; 1, X"0; 2, X"1.

PERIODIC STRING RESPONSE TO AN IMPACT 63
The action of this force can be considered as the action of the set of consequtive
instantaneous impulses. After integration the response with respect to ¹

0
over the

time segment 0)¹
0
)¹, yields

>(X, ¹)

"a
0
/(2nf )P

T

0

exp(iX
0
¹

0
) d¹

0P
`=

~=

exp(iX(¹!¹
0
))A(X, X) dX.



64 P. M. BELOTSERKOVSKIY
This is the string response at the time ¹ to action of the concentrated
harmonic force over the time interval mentioned. In order to escape double
integration, one should change the sequence of integration and calculate the inner
integral. After this, the string response obtains the form of a single improper
integral

> (X, ¹)"
a
0

2nif P
`=

~=

exp(iX
0
¹)!exp(iX¹)
X

0
!X

A(X, X) dX. (30)

This integral represents a transient system of waves, which turns into the stationary
one as ¹P#R. Consider the periodic string unsteady response at the suspension
point X"0 to the harmonic force, suddenly applied to the same point.
Substituting A (0, X) into integral (30) one obtains

>(0, ¹)"
a
0

2nif P
`=

~=

exp(iX
0
¹)!exp(iX¹)
X

0
!X

sinXdX
X(H

0
!H

1
)
. (31)

One can calculate both the real and imaginary parts of integral (31) in the same
manner as before. Figure 5 shows the complex value (31) dependence on the
dimensionless time ¹ in three-dimensional space. The horizontal axis OR is real,
while the vertical one OI is imaginary. There are right angles between these the
¹-axis. Calculations correspond to K"2 and K

1
"0)1. Curves 1, 2 and 3 relate to

the following values n/2, n and 0)451n of the dimensionless angular velocity X
0
.

These values correspond to a regular excitation, anti-resonance and resonance (see
Figure 2). Therefore, curve 1 gradually turns into a regular spiral that corresponds
to the steady state oscillations. Curve 2 is more complex. It gradually developes just
after the harmonic force appearence. Then, it shrinks like the dying swan, curling up
the ¹-axis. Due to resistance in the suspensions, a certain distance between the
curve and the ¹-axis remains (see reference [4]). Curve 3 moves o! the ¹-axis as
¹P#R.

If X
0
"0, then the suddenly applied force is a constant one of magnitude a

0
. In

this case, integral (30) reduces to the following one:

>(X, ¹)"
a
0

2nif P
`=

~=

exp(iX¹)!1
X

A (X, X) dX. (32)

The imaginary part of integral (32) becomes zero. In the particular cases X
0
"0 and

X"0 or 1, the real integral (32) reduces to

>(0, ¹)"
a
0

2ni f P
`=

~=

exp(iX¹)!1
X2

sinXdX
H

0
!H

1

,

>(1, ¹)"
a
0

2nif P
`=

~=

exp(iX¹)!1
X2

H
1
sinXdX

H
0
!H

1

.



Figure 5. Response to a suddenly applied harmonic force; K"2, K
1
"0)1; 1, X

0
"n/2; 2, X

0
"n;

3, X
0
"0)415n.
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Figure 6 shows results of calculation of these integrals with K"2 and K
1
"0)1

again. Curve 1 indicates the suspension point response to the constant force, sudden-
ly applied to the same point, while curve 2 shows the neighbour suspension point res-
ponse to the same force. Two dotted lines show the static de#ection, whose values
relate to the points and has been taken from Figure 3. Curve 1 begins to raise gradual-
ly just after the constant force appearance at the time ¹"0 and Curve 2 does at the
time ¹"1, when the string disturbance reaches the point X"1. After that, both
curves oscillate around the dotted lines with the dominant dimensionless angular velo-
city of 0)415n, that corresponds to the "rst resonance (see Figure 2). The oscillations
vanish as ¹P#R. There is no instantaneous lifting in the curves as well as small
#uctuations. This follows the smoothing e!ect of the integration with respect to ¹.



Figure 6. Response to a suddenly applied constant force; K"2, K
1
"0)1, X

0
"0; 1, X"0; 2,

X"1.

Figure 7. Periodic string unsteady de#ection, caused by a suddenly applied constant force.
Transition to a static de#ection; K"1, K

1
"0)15.
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Figure 7 shows oscillations of the string segment, which consists of three spans.
Calculations have been made by means of integral (32) for X

0
"0 with K"1 and

K
1
"0)15. One sees four curves, which stretch in the direction of the ¹-axis and

indicate the de#ection of the suspension points at X equals !1, 0 (the excitation
point), 1 and 2. These four curves are crossed by 25 curves, which successively
presents the string shape at the dimensionless time that ranges from ¹"0 to 6 with
the time interval 0)25. The front one, that relates to ¹"0, is straight. One sees
fractures in other ones that are caused by the concentrated forces, applied to the
string at the suspension points. There are two fractures in the string shape that
follow the string dynamical behaviour itself [13]. The string disturbance
propagation with the constant speed is seen just after the appearance of the
constant force at ¹"0. Two oblique dotted lines mark boundaries of the string
disturbance and those fractures. As time ¹ increases, formation of the string static
shape, shown in Figure 3, is clearly seen.

6. CONCLUSIONS

The unsteady response of an in"nite periodic structure to a forced excitation has
been calculated. The in"nite structure considered is a stretched string, supported by
equidistantly spaced identical suspensions. Each suspensions consists of a spring
and a dashpot with viscous damping, in parallel. Any forced excitation represents
a sequence or a distribution of impluses. The periodic string response to an
instantaneous impulse of force, applied to the structure at an arbitrary point, has
been found and presented in the form of an improper single integral. This integral
has been used to calculate the strings response to the suddenly applied harmonic or
constant force. The calculated response rightly represents the string behaviour and
periodic nature.
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